m/fzf
1
0
mirror of https://github.com/junegunn/fzf.git synced 2025-11-18 00:03:39 -05:00
Files
fzf/src/pattern.go
Junegunn Choi efbcd5a683 Require quotes on both sides for boundary matching even in --exact mode
Only requiring '-suffix in --exact mode is confusing and not
straightforward. Requiring '-prefix in --exact mode means that
the users can experience unintended mode switches while typing.

e.g.
     'it   -> fuzzy (many results)
     'it'  -> boundary (few results)
     'it's -> fuzzy (many results)

However, user who intends to input a boundary query should not be
interested in the intermediate results, and the number of matches
decreases as she types, so it should be okay.

On the other hand, user who does intend to type "it's" will be surprised
by the sudden decrease of the match count, but eventually get the right
result.
2024-08-29 17:08:23 +09:00

420 lines
10 KiB
Go

package fzf
import (
"fmt"
"regexp"
"strings"
"github.com/junegunn/fzf/src/algo"
"github.com/junegunn/fzf/src/util"
)
// fuzzy
// 'exact
// ^prefix-exact
// suffix-exact$
// !inverse-exact
// !'inverse-fuzzy
// !^inverse-prefix-exact
// !inverse-suffix-exact$
type termType int
const (
termFuzzy termType = iota
termExact
termExactBoundary
termPrefix
termSuffix
termEqual
)
type term struct {
typ termType
inv bool
text []rune
caseSensitive bool
normalize bool
}
// String returns the string representation of a term.
func (t term) String() string {
return fmt.Sprintf("term{typ: %d, inv: %v, text: []rune(%q), caseSensitive: %v}", t.typ, t.inv, string(t.text), t.caseSensitive)
}
type termSet []term
// Pattern represents search pattern
type Pattern struct {
fuzzy bool
fuzzyAlgo algo.Algo
extended bool
caseSensitive bool
normalize bool
forward bool
withPos bool
text []rune
termSets []termSet
sortable bool
cacheable bool
cacheKey string
delimiter Delimiter
nth []Range
procFun map[termType]algo.Algo
cache *ChunkCache
}
var _splitRegex *regexp.Regexp
func init() {
_splitRegex = regexp.MustCompile(" +")
}
// BuildPattern builds Pattern object from the given arguments
func BuildPattern(cache *ChunkCache, patternCache map[string]*Pattern, fuzzy bool, fuzzyAlgo algo.Algo, extended bool, caseMode Case, normalize bool, forward bool,
withPos bool, cacheable bool, nth []Range, delimiter Delimiter, runes []rune) *Pattern {
var asString string
if extended {
asString = strings.TrimLeft(string(runes), " ")
for strings.HasSuffix(asString, " ") && !strings.HasSuffix(asString, "\\ ") {
asString = asString[:len(asString)-1]
}
} else {
asString = string(runes)
}
// We can uniquely identify the pattern for a given string since
// search mode and caseMode do not change while the program is running
cached, found := patternCache[asString]
if found {
return cached
}
caseSensitive := true
sortable := true
termSets := []termSet{}
if extended {
termSets = parseTerms(fuzzy, caseMode, normalize, asString)
// We should not sort the result if there are only inverse search terms
sortable = false
Loop:
for _, termSet := range termSets {
for idx, term := range termSet {
if !term.inv {
sortable = true
}
// If the query contains inverse search terms or OR operators,
// we cannot cache the search scope
if !cacheable || idx > 0 || term.inv || fuzzy && term.typ != termFuzzy || !fuzzy && term.typ != termExact {
cacheable = false
if sortable {
// Can't break until we see at least one non-inverse term
break Loop
}
}
}
}
} else {
lowerString := strings.ToLower(asString)
normalize = normalize &&
lowerString == string(algo.NormalizeRunes([]rune(lowerString)))
caseSensitive = caseMode == CaseRespect ||
caseMode == CaseSmart && lowerString != asString
if !caseSensitive {
asString = lowerString
}
}
ptr := &Pattern{
fuzzy: fuzzy,
fuzzyAlgo: fuzzyAlgo,
extended: extended,
caseSensitive: caseSensitive,
normalize: normalize,
forward: forward,
withPos: withPos,
text: []rune(asString),
termSets: termSets,
sortable: sortable,
cacheable: cacheable,
nth: nth,
delimiter: delimiter,
cache: cache,
procFun: make(map[termType]algo.Algo)}
ptr.cacheKey = ptr.buildCacheKey()
ptr.procFun[termFuzzy] = fuzzyAlgo
ptr.procFun[termEqual] = algo.EqualMatch
ptr.procFun[termExact] = algo.ExactMatchNaive
ptr.procFun[termExactBoundary] = algo.ExactMatchBoundary
ptr.procFun[termPrefix] = algo.PrefixMatch
ptr.procFun[termSuffix] = algo.SuffixMatch
patternCache[asString] = ptr
return ptr
}
func parseTerms(fuzzy bool, caseMode Case, normalize bool, str string) []termSet {
str = strings.ReplaceAll(str, "\\ ", "\t")
tokens := _splitRegex.Split(str, -1)
sets := []termSet{}
set := termSet{}
switchSet := false
afterBar := false
for _, token := range tokens {
typ, inv, text := termFuzzy, false, strings.ReplaceAll(token, "\t", " ")
lowerText := strings.ToLower(text)
caseSensitive := caseMode == CaseRespect ||
caseMode == CaseSmart && text != lowerText
normalizeTerm := normalize &&
lowerText == string(algo.NormalizeRunes([]rune(lowerText)))
if !caseSensitive {
text = lowerText
}
if !fuzzy {
typ = termExact
}
if len(set) > 0 && !afterBar && text == "|" {
switchSet = false
afterBar = true
continue
}
afterBar = false
if strings.HasPrefix(text, "!") {
inv = true
typ = termExact
text = text[1:]
}
if text != "$" && strings.HasSuffix(text, "$") {
typ = termSuffix
text = text[:len(text)-1]
}
if len(text) > 2 && strings.HasPrefix(text, "'") && strings.HasSuffix(text, "'") {
typ = termExactBoundary
text = text[1 : len(text)-1]
} else if strings.HasPrefix(text, "'") {
// Flip exactness
if fuzzy && !inv {
typ = termExact
} else {
typ = termFuzzy
}
text = text[1:]
} else if strings.HasPrefix(text, "^") {
if typ == termSuffix {
typ = termEqual
} else {
typ = termPrefix
}
text = text[1:]
}
if len(text) > 0 {
if switchSet {
sets = append(sets, set)
set = termSet{}
}
textRunes := []rune(text)
if normalizeTerm {
textRunes = algo.NormalizeRunes(textRunes)
}
set = append(set, term{
typ: typ,
inv: inv,
text: textRunes,
caseSensitive: caseSensitive,
normalize: normalizeTerm})
switchSet = true
}
}
if len(set) > 0 {
sets = append(sets, set)
}
return sets
}
// IsEmpty returns true if the pattern is effectively empty
func (p *Pattern) IsEmpty() bool {
if !p.extended {
return len(p.text) == 0
}
return len(p.termSets) == 0
}
// AsString returns the search query in string type
func (p *Pattern) AsString() string {
return string(p.text)
}
func (p *Pattern) buildCacheKey() string {
if !p.extended {
return p.AsString()
}
cacheableTerms := []string{}
for _, termSet := range p.termSets {
if len(termSet) == 1 && !termSet[0].inv && (p.fuzzy || termSet[0].typ == termExact) {
cacheableTerms = append(cacheableTerms, string(termSet[0].text))
}
}
return strings.Join(cacheableTerms, "\t")
}
// CacheKey is used to build string to be used as the key of result cache
func (p *Pattern) CacheKey() string {
return p.cacheKey
}
// Match returns the list of matches Items in the given Chunk
func (p *Pattern) Match(chunk *Chunk, slab *util.Slab) []Result {
// ChunkCache: Exact match
cacheKey := p.CacheKey()
if p.cacheable {
if cached := p.cache.Lookup(chunk, cacheKey); cached != nil {
return cached
}
}
// Prefix/suffix cache
space := p.cache.Search(chunk, cacheKey)
matches := p.matchChunk(chunk, space, slab)
if p.cacheable {
p.cache.Add(chunk, cacheKey, matches)
}
return matches
}
func (p *Pattern) matchChunk(chunk *Chunk, space []Result, slab *util.Slab) []Result {
matches := []Result{}
if space == nil {
for idx := 0; idx < chunk.count; idx++ {
if match, _, _ := p.MatchItem(&chunk.items[idx], p.withPos, slab); match != nil {
matches = append(matches, *match)
}
}
} else {
for _, result := range space {
if match, _, _ := p.MatchItem(result.item, p.withPos, slab); match != nil {
matches = append(matches, *match)
}
}
}
return matches
}
// MatchItem returns true if the Item is a match
func (p *Pattern) MatchItem(item *Item, withPos bool, slab *util.Slab) (*Result, []Offset, *[]int) {
if p.extended {
if offsets, bonus, pos := p.extendedMatch(item, withPos, slab); len(offsets) == len(p.termSets) {
result := buildResult(item, offsets, bonus)
return &result, offsets, pos
}
return nil, nil, nil
}
offset, bonus, pos := p.basicMatch(item, withPos, slab)
if sidx := offset[0]; sidx >= 0 {
offsets := []Offset{offset}
result := buildResult(item, offsets, bonus)
return &result, offsets, pos
}
return nil, nil, nil
}
func (p *Pattern) basicMatch(item *Item, withPos bool, slab *util.Slab) (Offset, int, *[]int) {
var input []Token
if len(p.nth) == 0 {
input = []Token{{text: &item.text, prefixLength: 0}}
} else {
input = p.transformInput(item)
}
if p.fuzzy {
return p.iter(p.fuzzyAlgo, input, p.caseSensitive, p.normalize, p.forward, p.text, withPos, slab)
}
return p.iter(algo.ExactMatchNaive, input, p.caseSensitive, p.normalize, p.forward, p.text, withPos, slab)
}
func (p *Pattern) extendedMatch(item *Item, withPos bool, slab *util.Slab) ([]Offset, int, *[]int) {
var input []Token
if len(p.nth) == 0 {
input = []Token{{text: &item.text, prefixLength: 0}}
} else {
input = p.transformInput(item)
}
offsets := []Offset{}
var totalScore int
var allPos *[]int
if withPos {
allPos = &[]int{}
}
for _, termSet := range p.termSets {
var offset Offset
var currentScore int
matched := false
for _, term := range termSet {
pfun := p.procFun[term.typ]
off, score, pos := p.iter(pfun, input, term.caseSensitive, term.normalize, p.forward, term.text, withPos, slab)
if sidx := off[0]; sidx >= 0 {
if term.inv {
continue
}
offset, currentScore = off, score
matched = true
if withPos {
if pos != nil {
*allPos = append(*allPos, *pos...)
} else {
for idx := off[0]; idx < off[1]; idx++ {
*allPos = append(*allPos, int(idx))
}
}
}
break
} else if term.inv {
offset, currentScore = Offset{0, 0}, 0
matched = true
continue
}
}
if matched {
offsets = append(offsets, offset)
totalScore += currentScore
}
}
return offsets, totalScore, allPos
}
func (p *Pattern) transformInput(item *Item) []Token {
if item.transformed != nil {
return *item.transformed
}
tokens := Tokenize(item.text.ToString(), p.delimiter)
ret := Transform(tokens, p.nth)
item.transformed = &ret
return ret
}
func (p *Pattern) iter(pfun algo.Algo, tokens []Token, caseSensitive bool, normalize bool, forward bool, pattern []rune, withPos bool, slab *util.Slab) (Offset, int, *[]int) {
for _, part := range tokens {
if res, pos := pfun(caseSensitive, normalize, forward, part.text, pattern, withPos, slab); res.Start >= 0 {
sidx := int32(res.Start) + part.prefixLength
eidx := int32(res.End) + part.prefixLength
if pos != nil {
for idx := range *pos {
(*pos)[idx] += int(part.prefixLength)
}
}
return Offset{sidx, eidx}, res.Score, pos
}
}
return Offset{-1, -1}, 0, nil
}